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NUMERICAL SOLUTION OF THE SYSTEM OF LINEAR FREDHOLM
INTEGRAL EQUATIONS BASED ON DEGENERATING KERNELS

S. KARIMI1, M. JOZI1

Abstract. In this paper, a new numerical method is proposed for solving system of linear

Fredholm integral equations of the second kind. This method is based on Taylor-series expansion

which degenerates kernels and reduces the system of integral equations to a block algebraic

linear system. Convergence analysis is investigated and test problems are given to illustrate the

robustness and efficiency of the new method.
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1. Introduction

We consider the system of linear Fredholm integral equations of the form:

U(x) = F(x) + λ

∫

Γ
K(x, y)U(y)dy, x ∈ Γ = [0, 1], (1)

with

U(x) = [u1(x), u2(x), ..., us(x)]T ,

F(x) = [f1(x), f2(x), ..., fs(x)]T ,

K(x, y) = [Kij(x, y)] i, j = 1, 2, ..., s,

where the kernel K is continuous, F is given and U is the solution to be determined. Assuming
that X is a Banach space, we can also write the equation (1) as follows

(I − λK)U = F , (2)

where

K : X → X
KU =

∫

Γ
K(x, y)U(y)dy.

Recently, many different methods have been proposed to approximate the solution of integral
equations systems [2, 5, 6]. Babolian et al. used Adomian decomposition method to obtain the
solution of system (1) [3]. The Homotopy perturbation method [7] and its modification [8] were
proposed by javidi and Golbabai. Maleknejad et al. presented a Taylor expansion method for a
second kind Fredholm integral equation system with smooth or weakly singular kernel [14]. Their
proposed method reduce the system of integral equation to linear system of ordinary differential
equations. Golbabai and Keramati presented a simple method to approximate the solution
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of system of linear integral equations of the second kind based on Adomian’s decomposition
method [9]. Convergence analysis of Sinc-collocation method for approximating the solution
of the integral equations system was proposed by Rashidinia and Zarebnia [16]. Triangular
functions method for the solution of Fredholm integral equations system has been proposed
by Almasieh and Roodaki in [1]. Moreover, Jafarian and Measoomynia used Feed-back neurol
networks(NNs) approach for finding the approximate solution of (1) [10]. They substituted the
Nth truncation of the Taylor expansion for unknown function in the origin system. It is well
known that the Taylor expansion is a powerful tool to obtain the solution of different problems
in numerical analysis. In recent years, many different methods based on Taylor expansion have
been proposed in integral equation problems [10, 12, 13, 14, 15]. Since the Fredholm integral
equation with degenerate kernel, can be solved easily [11], in this paper, starting from systems
of equations having smooth kernels, we reduce to solve systems of equations having degenerate
kernels. To do this we expand each kernel ki,j , i, j = 1, . . . , s, with respect to the variable y in
a suitable point c belonging to Γ. The approximate solution of system (1) can be obtained by
solving the resulting block algebraic system of equation.

The organization of the paper is as follows. In Section 2, we establish the new method for
solving the Fredholm integral system of the second kind. We will discuss convergence analysis of
this method in Section 3. The numerical results are given in Section 4 to show the effectiveness
of the proposed method. Finally, we make some concluding remarks in Section (5).

2. Description of the proposed method

First, consider the following Fredholm integral equation

u(x) = f(x) + λ

∫

Γ
k(x, y)u(y)dy, x ∈ Γ. (3)

Suppose that kernel k and its derivatives of any order with respect to variable y exist in a
neighborhood of a point c ∈ Γ. In this case k(x, y) can be approximated by using the N − th

truncation of its Taylor-series expansion with respect to y at the point (x, c):

k(x, y) ' k(x, c) + (y − c)
∂k

∂y
|(x,c) +

(y − c)2

2!
∂2k

∂y2
|(x,c) + ... +

(y − c)N−1

(N − 1)!
∂N−1k

∂yN−1
|(x,c) (4)

which obtained by using Nth truncation of the Taylor-series expansion. Substituting the equa-
tion (4) into (3), we get the following degenerate integral equation

uN (x) = f(x) + λ

N∑

i=1

ai(x)
∫

Γ
bi(y)uN (y)dy, (5)

where

ai(x) =
1

(i− 1)!
∂i−1k

∂yi−1
|(x,c), bi(y) = (y − c)i−1, i = 1, 2, ..., N.

Following [11] we know that solution of integral equations (5) leads to a system of N linear
algebraic equations that is easily solvable.

Now we want to generalize the above method for solving the system of integral equations (1).
For convenience, we consider rth equation of system (1) as

ur(x) = fr(x) + λ
s∑

p=1

∫

Γ
Krp(x, y)up(y)dy, r = 1, 2, ..., s. (6)
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Suppose that all kernels Krp, r, p = 1, 2, ..., s have the requirements listed for kernel of equation
(3). Therefore, similar to (4) the kernels Krp(x, y) can be approximated as follows:

Krp(x, y) ' Krp(x, c) + (y − c)∂Krp

∂y |(x,c) + (y−c)2

2!
∂2Krp

∂y2 |(x,c)

+... + (y−c)N−1

(N−1)!
∂N−1Krp

∂yN−1 |(x,c), r, p = 1, 2, ..., s.

(7)

Substituting the equation (7) in to (6), we get the following system:

uN
r (x) = fr(x) + λ

s∑

p=1

N∑

l=1

λrp
l (x)

∫

Γ
µl(y)uN

p (y)dy, r = 1, 2, ..., s, (8)

where

λrp
l (x) =

1
(l − 1)!

∂l−1Krp

∂yl−1
|(x,c), r, p = 1, 2, ..., s,

µl(y) = (y − c)l−1, l = 1, 2, ..., N.

Let

β
(p)
l =

∫

Γ
µl(y)uN

p (y)dy, l = 1, 2, ..., N, p = 1, 2, ..., s,

which are unknown constants depending on uN
p (y). So equation (8) can be rewritten as follows:

uN
r (x) = fr(x) + λ

s∑

p=1

N∑

l=1

β
(p)
l λrp

l (x), r = 1, 2, ..., s. (9)

By multiplying (9) with µj(x), j = 1, 2, ..., N , and integrating, we obtain

∫
Γ µj(x)ur(x)dx =

∫
Γ µj(x)fr(x)dx + λ

s∑
p=1

N∑
l=1

β
(p)
l

∫
Γ µj(x)λrp

l (x)dx.

r = 1, 2, ..., s, j = 1, 2, ..., N.

(10)

Let

F (r) = [F (r)
1 , F

(r)
2 , ..., F (r)

s ]T , r = 1, 2, ..., N, (11)

with

F
(r)
j =

∫
Γ µj(x)fr(x)dx, r = 1, 2, ..., s, j = 1, 2, ..., N, (12)

and

β(r) = [β(r)
1 , β

(r)
2 , ..., β

(r)
N ]T , r = 1, 2, ..., s.

We shall rewrite equation (10) in the matrix form

β(r) = F (r) + A
(r)
1 β(1) + A

(r)
2 β(2) + ... + A(r)

s β(s), r = 1, 2, ..., s, (13)

where

A(r)
p = [λaij ]1≤i,j≤N , aij =

∫

Γ
µi(x)λrp

j (x)dx.

Or more generally one can write the system (13) as

Aβ = F, (14)
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with

A =




I −A
(1)
1 A

(1)
2 ... A

(1)
s

A
(2)
1 I −A

(2)
2 ... A

(2)
s

...
...

. . .
...

A
(s)
1 A

(s)
2 · · · I −A

(s)
s




,

β =




β(1)

β(2)

...
β(s)


 , F =




F (1)

F (2)

...
F (s)


 ,

where A and F , are block known matrices of Ns×Ns and Ns× 1 dimensions respectively, I is
N ×N identity matrix and β is unknown Ns× 1 block matrix to be determined. The algebraic
linear system (14) can be solved exactly or numerically. Substituting the solution of system (14)
in the equation (9), the approximate solution of the system of integral equations (1) is obtained
as follows:

UN (x) = F(x) + λA(x)β, (15)

with

F(x) =




f1(x)
f2(x)

...
fs(x)


 , A(x) =




A(1)
1 (x) A(1)

2 (x) ... A(1)
s (x)

A(2)
1 (x) A(2)

2 (x) ... A(2)
s (x)

...
...

. . .
...

A(s)
1 (x) A(s)

2 (x) · · · A(s)
s (x)




,

where

A(r)
p (x) = [Λ1(x), Λ2(x), ...,ΛN (x)], Λi(x) = λrp

i (x), i = 1, 2, ..., N, r, p = 1, 2, ..., s.

3. Convergence analysis

In this section, the convergence analysis of the new method is investigated. From Section 2
and Taylor’s theorem, we have

Kij(x, y) =
N∑

l=1

µl(y)λij
l (x) + RN

ij (x, y), i, j = 1, 2, ..., s, (16)

with

RN
ij (x, y) =

(y − c)N

(N)!
∂NKij

∂yN
|(x,ξN

ij ),

where ξN
ij is between y and c. In addition,

lim
N→∞

RN
ij (x, y) = 0, ∀y ∈ (c− δij , c + δij), (17)

where δij is convergence radius of Taylor-series of Kij to variable y about y = c. The following
proposition is explicit result of the Taylor-series expansion and it is easy to prove.

Proposition 3.1. Let max
x∈[0,1]

|∂NKij

∂yN |(x,ξN
ij ) |= M, then

min
c∈[0,1]

max
(x,y)∈Ω

|RN
ij (x, y)| = M

2NN !
,

where Ω = [0, 1]× [0, 1].
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Now let X be a Banach space with norm ‖ U ‖2= sup
x∈Γ

√
s∑

i=1
| ui(x) |2. Similar to (2), equation

(8) can be rewritten as the following operator form:

(I − λKN )UN = F , (18)

where KN be the approximate integral operator associated with matrix kernel

KN (x, y) = [KN
ij (x, y)]1≤i,j≤s, KN

ij (x, y) =
N∑

l=1

λij
l (x)µl(y), i, j = 1, 2, ..., s.

We denote the error expression by

E(x) = UN (x)− U(x), (19)

where UN (x) and U(x) are approximate and exact solution of the system of integral equations, re-
spectively. To show the convergence of the proposed method, we first prove the following lemma.

Let Y = {K : R2 → Rs×s|K ∈ C(Γ× Γ)}, we define the following norm on Y which is used in
convergence analysis of new method

||K||F = max
(x,y)∈Γ×Γ

√√√√
s∑

i=1

s∑

j=1

|Kij(x, y)|2.

Lemma 3.1. Let K : X → X be the bounded operator (2), and KN : X → X is the sequence of
integral operator (18), then

|||K−KN ||| → 0 as N →∞, (20)

where
|||K−KN ||| := max

‖U‖2=1
‖ (K−KN )U ‖2 .

Proof. By using the properties of the integral norm and consistency of two norms ||.||F and ||.||2,
we have

|||K−KN ||| = max
x∈Γ,‖U‖2=1

‖
∫

Γ
(K(x, y)−KN (x, y))U(y)dy ‖2

≤ max
x∈Γ

∫

Γ
‖ (K(x, y)−KN (x, y)) ‖F dy.

From (16), (17), we have

‖ (K(x, y)−KN (x, y)) ‖F =‖ RN (x, y) ‖F→ 0 as N →∞,

where RN (x, y) = [Rij(x, y)]1≤i,j≤s, which completes the proof. ¤
We note that the proposed method is included methods which takes a sequence of approximation
problems that, their solutions converges to the solution of exact problem (perturbation theory).
The following theorem describes a general convergence criterion for this class of method [4].

Theorem 3.1. Let V and W be normed spaces with at least one of them being complete. Assume
L ∈ L(V, W ) has a bounded inverse L−1 : W → V . Assume M ∈ L(V,W ) satisfies

|||M − L||| < 1
|||L−1||| . (21)

Then M : V → W is a bijection, M−1 ∈ L(W,V ) and

|||M−1||| ≤ |||L−1|||
1− |||L−1|||.|||L−M ||| . (22)
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Moreover

|||L−1 −M−1||| ≤ |||L−1|||2.|||L−M |||
1− |||L−1|||.|||L−M ||| . (23)

For the solutions of the equations Lv1 = w and Mv2 = w, we have the estimate

‖ v1 − v2 ‖≤ |||M−1|||. ‖ (L−M)v1 ‖ . (24)

For the convergence property of the proposed method, we apply the above result to obtain
the following main theorem. ¤

Theorem 3.2. Assume that K : X → X be the bounded operator (2) and right hand-side F be
a bounded vector function with respect to ||.||2. If (I − λK) ∈ L(X ,X ) has a bounded inverse
(I − λK)−1 : X → X , then (I − λKN ) : X → X is a bijection, (I − λKN )−1 ∈ L(X ,X ) and

|||(I − λKN )−1||| ≤ |||(I − λK)−1|||
1− | λ | .|||(I − λK)−1|||.|||K−KN ||| , (25)

where (I − λKN ) is the operator (18). Moreover for any sufficiently large N (N > M) the
solution of system (18) converges to the solution of system (2).

Proof. According to Lemma 3.2, we have

|λ|.|||K−KN ||| ≤ 1
|||(I − λK)−1||| ,

for some large N. By taking
L = I − λK, M = I − λKN ,

in Theorem 3.1, the proof is completed. ¤

4. Numerical experiments

In this section, some numerical examples are presented to illustrate the effectiveness of pro-
posed method for solving system of Fredholm integral equations (1). We denote ei, i = 1, 2, . . . , s

the maximum error ei = max
0≤j≤n

|uN
i (tj) − ui(tj)|, on the points tj = j∆t, j = 0, . . . , n with

∆t = 0.001 and Ei, i = 1, 2, . . . , s the error function Ei(x) = |uN
i (x) − ui(x)|, x ∈ Γ, where

uN
i (x) and ui(x) are the ith element of approximate and exact solutions of (1), respectively.

Numerical results of error values are listed in Tables 1, 2 and 3. In these tables the notations
c and N are the same as the one introduced in the Section 2 and cond(A) is denoted to the
condition number of matrix A in (14). As is illustrated in Table 3, the computed error values
e1 and e2 for c = 0.5 are better than those that for c = 0. This is due to Proposition 1. Conver-
gence history of the error functions Ei(x), i = 1, . . . , s, for Examples 4.1, 4.2 and 4.3 are shown
in Figures 1 and 2. These figures show the fast convergence rate of the new method for some
small integer N . All examples presented in this section were computed in double precision with
a MATLAB code. In addition, we used the quad and diff MATLAB functions to approximate
the involved definite integrals and to compute the required derivatives, respectively. Also, the
resulting block algebraic linear system of equations obtained by the new method were computed
exactly. However, one can compute it numerically for large system.

Example 4.1. Consider the system of linear Fredholm integral equations
{

u1(x) = f1(x)− ∫ 1
0 exyu1(y)dy − ∫ 1

0 cos(xy)u2(y)dy,

u2(x) = f2(x)− ∫ 1
0 ex2yu1(y)dy − ∫ 1

0 exyu2(y)dy,
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Table 1. Numerical results for Example 4.1 with c = 0.

N e1 e2 cond(A)
3 9.80891E − 02 1.22840E − 01 3.84335
6 3.01207E − 04 6.54223E − 04 4.05413
9 6.50708E − 07 9.18434E − 07 4.14717
12 5.46298E − 10 5.36826E − 10 4.19857
15 1.27454E − 13 1.75859E − 13 4.23125

Table 2. Numerical results for Example 4.2 with c = 0.

N e1 e2 cond(A)
3 1.01818E − 01 1.01818E − 01 3.74787
6 5.22163E − 04 5.22163E − 04 4.00881
9 7.57749E − 07 7.57799E − 07 4.14836
12 5.02640E − 10 5.52640E − 10 4.22836
15 1.20017E − 10 2.14122E − 11 4.28002

Table 3. Numerical results for Example 4.3 with c = 0 and c = 0.5.

c=0 c=0.5
N e1 e2 e1 e2

3 5.98494E − 01 1.59502E − 01 5.90905E − 2 1.93954E − 2
6 1.24752E − 01 2.86340E − 02 8.93282E − 3 1.91431E − 3
9 4.11875E − 03 7.80963E − 04 1.29482E − 05 2.36340E − 6
12 5.80786E − 5 9.46699E − 6 8.15169E − 08 1.26105E − 08
15 4.30345E − 7 6.17140E − 8 2.94214E − 11 4.05631E − 12
18 1.87822E − 9 2.40950E − 10 4.55191E − 14 6.97774E − 15

where f1(x) = ex + sin(x)
x + ex+1−1

x+1 and f2(x) = ex−1
x + ex2+1−1

x2+1
+ 1 with exact solutions

(u1(x), u2(x)) = (ex, 1).

Example 4.2. Consider the system of linear Fredholm integral equations{
u1(x) = f1(x)− ∫ 1

0 exyu1(y)dy − ∫ 1
0 exyu2(y)dy,

u2(x) = f2(x)− ∫ 1
0 ex2yu1(y)dy − ∫ 1

0 ex2yu2(y)dy,

where f1(x) = ex + ex+1−1
x+1 + ex−1−1

x−1 and f1(x) = e−x + ex2+1−1
x2+1

+ ex2−1−1
x2−1

with exact solutions
(u1(x), u2(x)) = (ex, e−x).

Example 4.3. Consider the system of linear Fredholm integral equations [16],{
u1(x) = f1(x)− ∫ 1

0 ex−yu1(y)dy − ∫ 1
0 e(x+2)yu2(y)dy,

u2(x) = f2(x)− ∫ 1
0 exyu1(y)dy − ∫ 1

0 ex+yu2(y)dy,

where f1(x) = 2ex + ex+1−1
x+1 and f2(x) = ex + e−x + ex+1−1

x+1 with exact solutions (u1(x), u2(x)) =
(ex, e−x).
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Figure 1. Error functions Ei(x), i = 1, 2, for Example 4.1 (left) and Example
4.2 (right) with c = 0 and N = 12.

Figure 2. Error functions Ei(x), i = 1, 2, for Example 4.3 with c = 0(left),
c = 0.5(right) and N = 15.

5. Conclusion

A new method for solving system of linear Fredholm integral equations of second kind was
proposed. The method is based on the Taylor expansion of each kernel. This lead to a system
of Fredholm equations having degenerate kernels that is reduced to a block linear algebraic
system. By solving the block linear system, an approximate solution was obtained for the
system of integral equations. Under certain conditions, it was shown that the approximate
solution obtained by the proposed method converges to the exact solution. Numerical results
verified the efficiency and robustness of the proposed method.
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